

International Energy Agency Energy Conservation in Buildings and Community Systems Programme

Project Summary Report

Heating & Cooling

with a Focus on

Increased Energy Efficiency

& Improved Comfort

Energy Conservation in Buildings & Community Systems Programme

ECBCS Annex 37

Heating and Cooling with a Focus on Increased Energy Efficiency and Improved Comfort

ECBCS Annex 37 Project Summary Report

Edited by Markku Virtanen and John Palmer

Published by AECOM Ltd on behalf of the International Energy Agency Energy Conservation in Buildings and Community Systems Programme

© Copyright AECOM Ltd 2010

All property rights, including copyright, are vested in AECOM Ltd, Operating Agent for the ECBCS Executive Committee Support Services Unit, on behalf of the Contracting Parties of the International Energy Agency Implementing Agreement for a Programme of Research and Development on Energy Conservation in Buildings and Community Systems.

In particular, no part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of AECOM Ltd.

Published by AECOM Ltd, AECOM House, 63 - 77 Victoria Street, St Albans, Hertfordshire AL1 3ER, United Kingdom

Disclaimer Notice: This publication has been compiled with reasonable skill and care. However, neither AECOM Ltd nor the ECBCS Contracting Parties (of the International Energy Agency Implementing Agreement for a Programme of Research and Development on Energy Conservation in Buildings and Community Systems) make any representation as to the adequacy or accuracy of the information contained herein, or as to its suitability for any particular application, and accept no responsibility or liability arising out of the use of this publication. The information contained herein does not supersede the requirements given in any national codes, regulations or standards, and should not be regarded as a substitute for the need to obtain specific professional advice for any particular application.

ISBN 978-0-9562808-4-8

Participating countries in ECBCS:

Australia, Austria, Belgium, Canada, P.R. China, Czech Republic, Denmark, Finland, France, Germany, Greece, Italy, Japan, Republic of Korea, the Netherlands, New Zealand, Norway, Poland, Portugal, Spain, Sweden, Switzerland, Turkey, United Kingdom and the United States of America.

Additional copies of this report may be obtained from:

ECBCS Bookshop C/o AECOM Ltd 94/96 Newhall Street Birmingham B3 1PB United Kingdom Web: www.ecbcs.org Email: essu@ecbcs.org

Preface

International Energy Agency

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. A basic aim of the IEA is to foster co-operation among the twenty-eight IEA participating countries and to increase energy security through energy conservation, development of alternative energy sources and energy research, development and demonstration (RD&D). The IEA co-ordinates research and development in a number of areas related to energy.

Energy Conservation in Buildings and Community Systems Programme

The mission of the IEA Energy Conservation for Building and Community Systems Programme is to develop and facilitate the integration of technologies and processes for energy efficiency and conservation into healthy, low emission, and sustainable buildings and communities, through innovation and research.

The research and development strategies of the ECBCS Programme are derived from research drivers, national programmes within IEA countries, and the IEA Future Building Forum Think Tank Workshop, held in March 2007. The R&D strategies represent a collective input of the Executive Committee members to exploit technological opportunities to save energy in the buildings sector, and to remove technical obstacles to market penetration of new energy conservation technologies. The R&D strategies apply to residential, commercial, office buildings and community systems, and will impact the building industry in three focus areas of R&D activities:

- Dissemination
- Decision-making
- Building products and systems

Overall control of the program is maintained by an Executive Committee, which not only monitors existing projects but also identifies new areas where collaborative effort may be beneficial. To date the following projects have been initiated by the executive committee on Energy Conservation in Buildings and Community Systems (completed projects are identified by (*)):

Annex 1:	Load Energy Determination of Buildings (*)
Annex 2:	Ekistics and Advanced Community Energy Systems (*)
Annex 3:	Energy Conservation in Residential Buildings (*)
Annex 4:	Glasgow Commercial Building Monitoring (*)
Annex 5:	Air Infiltration and Ventilation Centre
Annex 6:	Energy Systems and Design of Communities (*)
Annex 7:	Local Government Energy Planning (*)
Annex 8:	Inhabitants Behaviour with Regard to Ventilation (*)
Annex 9:	Minimum Ventilation Rates (*)
Annex 10:	Building HVAC System Simulation (*)
Annex 11:	Energy Auditing (*)
Annex 12:	Windows and Fenestration (*)
Annex 13:	Energy Management in Hospitals (*)
Annex 14:	Condensation and Energy (*)
Annex 15:	Energy Efficiency in Schools (*)
Annex 16:	BEMS 1- User Interfaces and System Integration (*)
Annex 17:	BEMS 2- Evaluation and Emulation Techniques (*)
Annex 18:	Demand Controlled Ventilation Systems (*)
Annex 19:	Low Slope Roof Systems (*)
Annex 20:	Air Flow Patterns within Buildings (*)
Annex 21:	Thermal Modelling (*)
Annex 22:	Energy Efficient Communities (*)
Annex 23:	Multi Zone Air Flow Modelling (COMIS) (*)

Annex 24:	Heat, Air and Moisture Transfer in Envelopes (*)			
Annex 25:	Real time HEVAC Simulation (*)			
Annex 26:	Energy Efficient Ventilation of Large Enclosures (*)			
Annex 27:	Evaluation and Demonstration of Domestic Ventilation Systems (*)			
Annex 28:	Low Energy Cooling Systems (*)			
Annex 29:	Daylight in Buildings (*)			
Annex 30:	Bringing Simulation to Application (*)			
Annex 31:	Energy-Related Environmental Impact of Buildings (*)			
Annex 32:	Integral Building Envelope Performance Assessment (*)			
Annex 33:	Advanced Local Energy Planning (*)			
Annex 34:	Computer-Aided Evaluation of HVAC System Performance (*)			
Annex 35:	Design of Energy Efficient Hybrid Ventilation (HYBVENT) (*)			
Annex 36:	Retrofitting of Educational Buildings (*)			
Annex 37:	Low Exergy Systems for Heating and Cooling of Buildings (LowEx) (*)			
Annex 38:	Solar Sustainable Housing (*)			
Annex 39:	High Performance Insulation Systems (*)			
Annex 40:	Building Commissioning to Improve Energy Performance (*)			
Annex 41:	Whole Building Heat, Air and Moisture Response (MOIST-ENG) (*)			
Annex 42:	The Simulation of Building-Integrated Fuel Cell and Other Cogeneration Systems (FC+COGEN-SIM) (*)			
Annex 43:	Testing and Validation of Building Energy Simulation Tools (*)			
Annex 44:	Integrating Environmentally Responsive Elements in Buildings			
Annex 45:	Energy Efficient Electric Lighting for Buildings			
Annex 46:	Holistic Assessment Tool-kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)			
Annex 47:	Cost-Effective Commissioning for Existing and Low Energy Buildings			
Annex 48:	Heat Pumping and Reversible Air Conditioning			
Annex 49:	Low Exergy Systems for High Performance Buildings and Communities			
Annex 50:	Prefabricated Systems for Low Energy Renovation of Residential Buildings			
Annex 51:	Energy Efficient Communities			
Annex 52:	Towards Net Zero Energy Solar Buildings			
Annex 53:	Total Energy Use in Buildings: Analysis & Evaluation Methods			
Annex 54:	Analysis of Micro-Generation & Related Energy Technologies in Buildings			
Annex 55:	Reliability of Energy Efficient Building Retrofitting - Probability Assessment of Performance & Cost (RAP-RETRO)			
Working Group -	Energy Efficiency in Educational Buildings (*)			
Working Group - Indicators of Energy Efficiency in Cold Climate Buildings (*)				
Working Group -	Annex 36 Extension: The Energy Concept Adviser (*)			
Working Group - Energy Efficient Communities				

(*) - Completed

Contents

1. 2.	Intr Exe	oduction ergy and LowEx Heating and Cooling in Buildings	. 1
	2.1.	Exergy an Explanation	2
3.	Lov	vEx Pre-Design Analysis Tools	. 4
4.	Lov	vEx Systems for Buildings	. 6
5.	Exa	Imple Buildings	. 9
!	5.1.	Bregenz - Art Museum	9
ļ	5.2.	Ecological Dwellings "Amboise" Maastricht, the Netherlands	10

1. Introduction

Annex 37 "Low Exergy Systems for Heating and Cooling of Buildings" (LowEx) of the IEA ECBCS implementing agreement has embraced the concept of exergy and explored its relevance to low temperature heating and high temperature cooling of buildings. The Annex has brought together worldwide experience and understanding of exergy to promote the use of energy sources in the most appropriate way for the required end use in building services.

The Annex has produced a Guidebook¹ of more than 280 pages that deals in great deal with the concept of exergy and its relevance to building services and human comfort within them. It provides a comprehensive list of systems that work together with the LowEx concept and gives example buildings that demonstrate the systems. A major product of the work of the Annex is the development of pre-design calculators that assist with LowEx design of buildings and their services. All that information and the tools are available in the Guidebook.

The aim of this report is to introduce architects and building design engineers to the concept of exergy. The report has the following sections:

- Exergy an explanation that provides a basic insight into the concept of exergy and shows how this can be applied to providing the heating and cooling of buildings.
- Exergy Pre-design Analysis Tools a spreadsheet tool for optimising the exergy use in buildings
- LowEx Systems for Buildings a compendium of heating and cooling systems that can be used to minimise the loss of exergy in heating and cooling systems
- Example case study buildings two of the 30 case studies reported by the Annex.

¹ "Low exergy systems for heating and cooling of buildings - Guidebook" is available as a CD version and also freely available as a PDF version on the internet (www.lowex.net). The CD version, however, offers a more reader friendly environment and some additional information.

2. Exergy and LowEx Heating and Cooling in Buildings

In the realm of energy use in buildings the most commonly used expressions are "energy use", "energy conservation", and "energy consumption". Whilst these have value and are widely understood they do not address the fact that energy is 'converted', rather than used or consumed, and it is rather better said that the energy changes its ability to do work. It is the ability of energy to do useful work that underpins the concept of exergy.

Exergy is a term that has been in existence for more than a century and has been used to describe the 'quality' of energy; by which we mean the ability to do work with respect to a final end state. The form in which "energy" is available to do work is fundamental to the development of the LowEx concept.

2.1. Exergy an Explanation

The normal analysis of energy use in a building will rely on the First Law of Thermodynamics that says that energy must be conserved. Hence we express the performance of the building in terms of energy conservation. For example, converting the chemical energy of gas to heat by combustion within a boiler cannot lose energy: that which does not get transferred to the water leaves via the flue with the combustion products or is lost from the boiler casing to the local environment. This description fulfils the requirement of the First Law and the 'energy efficiency' in everyday terms is the ratio of useful heat in the water to energy in the ingoing gas.

However, it can be seen that the value of the 'energy' has been degraded from a chemical form in the gas to heat at a low temperature from which it little or no mechanical work can be derived. Alternatively, if the gas had been used to power an engine to generate electricity, which has a greater 'value' than heat in terms of its ability to do work, then the 'potential' of the energy is maintained. The theory of exergy takes this decrease in availability to do useful work as the means of establishing the exergy content of an energy source.

As an example, consider a battery and a container of hot water as in the picture below. Each contains the same 100 kJ of energy but the value of the energy is quite different. Simplistically, the battery can be used for a wide range of functions such as driving motors, running a computer or providing light from a lamp - it can even be used to produce hot water at 43°C. The hot water however, has more limited usefulness but could adequately contribute to an underfloor heating system, or other similar LowEx system.

Exergy is therefore the expression of the 'quality' of energy that is lost when energy moves between either temperature levels or changes of state. It is a measure of the availability of energy to do useful work. It follows that when energy is expressed only in terms of heat then the loss of exergy is linear with temperature, however, when a change of state occurs, either chemical or mechanical, then the relationship is not linear but more of a discontinuity with a consequential loss in exergy not entirely dependent on the temperature levels of the process.

To determine this change in exergy 'Quality Factors' are used that compensate for the dissipation of exergy when energy moves from one state to another. The exergy of an energy resource is therefore expressed as the product of its energy content and an appropriate Quality Factor for that energy state.

exergy = energy x quality factor

Quality factors vary from 1.0 for electrical energy and mechanical energy to 0.9 for fossil fuels and 0.06 for thermal energy at 40° C. As in the battery example above an appropriate final thermal end-point is defined and for quality factors this is taken as thermal energy at 20° C. Hence the quality factor of thermal energy at 20° C is 0.00.

It follows from this that a key aim in any energy process is to minimise the loss of exergy in the system as this leaves available exergy for other functions. In practice this can simply mean using low temperature heat sources for heating and high temperature heat sources for cooling, but a full analysis of the exergy use of a system will provide insights beyond this simple assumption.

It is not only the mechanical services aspects of providing heating for a building that can benefit from the exergy approach. As explained more fully in the LowEx Guidebook adopting the exergy concept as part of the overall design philosophy of the building is important so that the basic building is designed to reduce the exergy burden it imposes on the energy conversion processes.

The exergy concept can be applied to human comfort and it can reveal benefits in both thermal comfort for the building occupants as well as the reduction of exergy loss. Recent studies suggest that a combination of lower air temperature and higher environmental radiant temperatures lead to the optimum human thermal comfort. Such a combination further benefits the LowEx concept.

Based on the above theories the LowEx Annex of the IEA has developed a tool that analyses the exergy flows in building heating and cooling systems and provides guidance on the selection of appropriate systems to minimise the loss of exergy.

3. LowEx Pre-Design Analysis Tools

The Annex developed a spreadsheet tool for analysing the exergy change for all steps of the energy chain for heating and cooling buildings - from the primary energy source, via the building, to the sink (i.e. the ambient environment). The tool is based on calculations under steady state design conditions rather than annual energy use calculations.

The tool is built up from sub-systems for all the important steps in the energy chain and has a range of inputs that covers all components of the system including building construction and building services equipment. Heat losses in the different components are calculated, as well as the auxiliary electricity required for lighting, pumps and fans. On the primary energy side, the inputs are differentiated between fossil and renewable sources. The key input and output parameters are shown in the table below. The resulting exergy loss by conditioning the building is given as the result of the calculations.

Site Conditions	Unit s	Estimate	Notes/Range
Project Name	-	Example	For Reference Only
Project Site	-	Project Site	For Reference Only
Inside temperature for heating and cooling load calculations	°C	23.00	For Reference Only - Imposed Value
Heating design temperature	°C	-5.00	-40 to 15
Cooling design temperature	°C	30.00	10 to 40
Average summer daily temperature range	°C	5.00	5 to 15
Cooling Humidity Level	-	Medium	Drop Down List
Latent to sensible heat ratio	-	1.50	From List or User Defined
Latitude of the project location	°N	45.50	-90 to 90
Mean earth temperature	°C	9.00	0 to 20
Annual earth temperature amplitude	°C	14.00	5 to 20
Soil type	-	Light rock	Drop Down List

Figure 1: Example of spreadsheet tool

Building Heating and Cooling Loads	Unit s	Estimate	Notes/Range
Type of building	-	Residential	Drop Down List
Building floor area	m²	36.00	
Number of floors	-	1	1 to 6
Window area	-	Standard	Drop Down List
Ratio of window area over floor area	-	0.40	From List or User Defined
Insulation level	-	Low	Drop Down List
Wall U-Value	W/(m ² °C)	0.50	
Roof U-Value	W/(m ^{2 o} C)	0.33	
Infiltration Rate	h ⁻¹	0.50	
Basement Wall U-Value	₩/(m ² °C)	1.00	
Basement Floor U-Value	₩/(m ² °C)	0.67	
Occupancy type	-	Continuous	Drop Down List
Equipment and lighting usage	-	Light	Drop Down List
Equipment Heat Load	W/m ²	5.00	From List or User Defined

Foundation type - Slab on grade Drop Down List System Description - Heating Application Distribution System - ING condensing boiler No storage Drop Down List Drop Down List Drop Down List Placement - ING condensing boiler No storage Drop Down List Drop Down List Placement - High insulation High Tres & 80 °C Drop Down List Drop Down List Drop Down List Design temperature drop - Low Drop Down List Drop Down List System Description - Cooling Application Unit Application Estimate Notes/Range Cooling Technology - Vapor Compression Chiller Drop Down List Drop Down List System Description - Cooling Cooling Technology - Vapor Compression Chiller Drop Down List Drop Down List System Description - Cooling Cooling Technology - Vapor Compression Chiller Drop Down List Drop Down List Estimated Coefficient Of Performance Cooling Technology - Vapor Compression Chiller Drom List or User Defined Drop Down List Guadiny factor - 0.70 From List or User Defined Drop Down List Guading factor - No distribution	Lighting Heat Load	W/m ²	5.00	From List or User
System Description - Heating Application Unit storage Estimate LNG condensing boller Notes/Range Generation System - LNG condensing boller Drop Down List Distribution System - No storage Drop Down List Placement - High, Tc = 80 °C Drop Down List Insulation level - High, Tc = 80 °C Drop Down List Design temperature - Low Drop Down List Drop Down List Design temperature - Low Drop Down List	Foundation type	-	Slab on grade	Drop Down List
System Description - Heating Application Unit Sorage System Estimate Notes/Range Generation System Distribution System - ING condensing boiler Drop Down List Drop Down List Placement - No storage Drop Down List Drop Down List Placement - High, Insulation Hean design temperature forp - Design temperature forp - Low Drop Down List Drop Down List System Description - Cooling Application Unit S Estimate Notes/Range Cooling Technology - Low Drop Down List Estimated Coefficient Of Performance (COP) Vapor Compression Chiller Drop Down List Estimated Coefficient Of Performance (COP - 4.00 From List or User Defined Electrical auxiliary power Water - Defined Storage System - No distribution Drop Down List Distribution System - No distribution Drop Down List From List or User Defined - No distribution Drop Down List Distribution System - No distribution Dro				
Application S Condensing boiler Nototrage Generation System - LNG condensing boiler Drop Down List Distribution System - No storage Drop Down List Placement - High insulation Drop Down List Mean design temperature drop - Low Drop Down List Design temperature drop - Low Drop Down List Placement - High, T = 80 °C Drop Down List Mean design temperature drop - HT radiators (DIN 255: 55/45) Drop Down List System Description - Cooling Unit Stimate Notes/Range Cooling Technology - Vapor Compression Chiller Drop Down List Estimated Coefficient Of Performance (COP) - Vapor Compression Chiller Drop Down List Storage System - - - From List or User Cold Energy Source - - - Prom List or User Drop Down List From List or User Drop Down List Drop Down List Distribution System<	System Description - Heating	Unit	Estimate	Notes/Range
Generation System - LNG condensing boiler Drop Down List Storage System - No storage Drop Down List Placement - Generator inside heated space Drop Down List Insulation level - High insulation Drop Down List Design temperature drop - High insulation Drop Down List Envision System - HT radiators (DN 255: 55/45) Drop Down List System Description - Cooling Unit Estimate Notes/Range Cooling Technology - Vapor Compression Chiller Drop Down List Estimated Coefficient Of Performance - 4.00 From List or User Constant parameter - 4.00 From List or User-Defined From List or User-Defined User-Defined User-Defined User-Defined - No distribution Drop Down List Gold Energy Surce - No distribution Drop Down List From List or User-Defined - No distribution Drop Down List Bacement - No distribution Drop Down List From List or User-Defined - No distribution Drop Down List Distribution System - No distribution Drop Down List	Application	S	LStinate	Notes/Range
Storage System - No storage Drop Down List Distribution System - Generator inside heated space Drop Down List Placement - High insulation Drop Down List Drop Down List Design temperature drop - Low Drop Down List Drop Down List System Description - Cooling Unit Estimate Notes/Range Drop Down List System Description - Cooling Unit Sustemate Second order Drop Down List Drop Down List System Description - Cooling Unit Sustemate Second order parameter - Drop Down List Constant parameter - 4.00 From List or User Defined Second order parameter - - Drop Down List Drop Down List Generator inside heated space - Refrigerant Drop Down List Description Generator inside heated space - 4.00 Befined Drop Down List Corb areary System - A.00 Befined Drop Down List Generator in Son Space -	Generation System	-	LNG condensing boiler	Drop Down List
Distribution System - Generator inside heated space Drop Down List Insulation level - High insulation Drop Down List Mean design temperature - High insulation Drop Down List Design temperature drop - Low Drop Down List System Description - Cooling Unit Estimate Notes/Range Application s Vapor Compression Chiller Drop Down List System Description - Cooling Unit Estimate Notes/Range Cooling Technology - Vapor Compression Chiller Drop Down List Estimated Coefficient OI Performance (COP) - Vapor Compression Chiller Drop Down List Estimated Coefficient OI Performance - 4.00 From List or User Electrical auxiliary power Water - Refrigerant - Cold Energy Source - Refrigerant - Drop Down List Distribution System - No distribution Drop Down List Placement - No distribution Drop Down List	Storage System	- [No storage	Drop Down List
Placement Insulation level Algh insulation Place Dopown List Drop Down List Drop	Distribution System	Г	Conceptor incide booted encode	Dran Davim List
Insulation level - Ingri insulation Diversion Dio Down List -		-	Generator Inside neated space	Drop Down List
Immediate Basign temperature drop - Image for the second of the second the second of the second the second of the second the s	Insulation level	-		Drop Down List
Design temperature drop - Low Drop Down List System Description - Cooling Application Unit s Estimate Notes/Range System Description - Cooling Cooling Technology - Vapor Compression Chiller Drop Down List Estimated Coefficient Of Performance (COP) - Vapor Compression Chiller Drop Down List First order parameter - 4.00 From List or User Defined User-Defined Second order parameter - 4.00 From List or User Defined User-Defined Cold Energy Source - Refrigerant Drop Down List Drop Down List Outly factor - 0.70 Drop Down List Drop Down List Distribution System - No distribution Drop Down List Distribution Syste	Design temperature drop	-	High, T <= 80°C	Drop Down List
Linksborn system Unit Estimate Notes/Range System Description - Cooling Application Unit Estimate Notes/Range Cooling Technology - Vapor Compression Chiller Drop Down List Estimated Coefficient Of Performance (COP) - 4.00 From List or User polynomial function of ambient temperature Constant parameter - 4.00 From List or User Defined - Electrical auxiliary power Wesc/ KWned - 0.70 From List or User Defined Quality factor - 0.70 From List or User Defined Drop Down List Placement - No distribution Drop Down List Insulation level - No distribution Drop Down List Placement - No distribution Drop Down List Efficiency - 1.00 From list Supply temperature - 1.00 From list Electrical auxiliary power Wesc/ - No distribution Drop Down List Insulation level - No distribution	Emission System	-	HT radiators (DIN 255: 55/45)	Drop Down List
System Description - Cooling Application Unit s Estimate Vapor Compression Chiller Notes/Range Cooling Technology - Vapor Compression Chiller Drop Down List Estimate Coefficient OI Performance (COP) - Assumes a second order polynomial function of ambient temperature Drop Down List Constant parameter - 4.00 From List or User Defined Defined Second order parameter - - Defined User-Defined Electrical auxiliary power Weed/ KWnest - 0.70 Drop Down List Quality factor - 0.70 Drop Down List Drop Down List Distribution System - No distribution Drop Down List Placement - No distribution Drop Down List Insulation level - No distribution Drop Down List Cooling Emission System - No distribution Drop Down List Fificiency - No distribution Drop Down List Supply temperature - No distribution Drop Down List Supply temperature <td></td> <td>-</td> <td></td> <td>Diop Down List</td>		-		Diop Down List
ApplicationsEstimateNotes/RangeCooling Technology-Vapor Compression ChillerDrop Down ListEstimated Coefficient Of Performance (COP)-Assumes a second order polynomial function of ambient temperatureDrop Down ListConstant parameter-4.00From List or User DefinedFirst order parameter-4.00From List or User DefinedSecond order parameter0.70Electrical auxiliary powerWeeder WeederNo storageDrop Down ListQuality factor-0.70Drop Down ListDistribution System-No distributionDrop Down ListPlacement-No distributionDrop Down ListDesign temperature-No distributionDrop Down ListCooling Emission System-No distributionDrop Down ListPlacement-1.00From listDesign temperature-1.00From listSupply temperature*-1.00From listSupply temperature*0.6From listBuilding Design Heating and Cooling LoadsUnitsEstimateConversion UnitsDesign temperaturewww.2.662Conversion UnitsBuilding heating and Cooling LoadsUnitsEstimateConversion UnitsBuilding heating and Cooling Basiding heating and Cooling ResisUnitsEstimateConversion UnitsBuilding heating energy demandMWh2.693Conver	System Description - Cooling	Unit		
Cooling Technology-Vapor Compression ChillerDrop Down ListEstimated Coefficient OI Performance (COP)-Assumes a second order polynomial function of ambient temperatureFrom List or User DefinedConstant parameter-4.00From List or User DefinedFirst order parameterUser-DefinedElectrical auxiliary powerWeter-RefrigerantDrop Down ListQuality factor-0.700Drop Down ListQuality factor-No storageDrop Down ListPlacement-No distributionDrop Down ListPlacement-No distributionDrop Down ListPlacement-No distributionDrop Down ListPlacement-No distributionDrop Down ListEfficiency-No distributionDrop Down ListSupply temperature drop-No distributionDrop Down ListEfficiency-1.00From listSupply temperatureNo distributionSupply temperature-1.00From listElectrical auxiliary power%cMaximum cooling load emissionWrm100.00From listBuilding Design Heating and (cooling LoadsKw2.652-Design cooling loadKW2.693Notes/RangeSupply temperature-Conversion UnitsBuilding heating energy demandKWh2.693-Building heati	Application	S	Estimate	Notes/Range
Estimated Coefficient Of Performance (COP)Assumes a second order ambient temperatureFrom List or User DefinedConstant parameter-4.00From List or User DefinedFirst order parameterUser-DefinedSecond order parameterUser-DefinedElectrical auxiliary powerWeer KWheatRefrigerantFrom List or User- DefinedCold Energy Source-0.70From List or User- DefinedQuality factor-0.70From List or User- DefinedDistribution System-No storageDrop Down ListPlacement-No distributionDrop Down ListInsulation level-No distributionDrop Down ListMean design temperature-No distributionDrop Down ListDesign temperature-1.00From listSupply temperature*C-7.00From listEtliciency-1.00From listSupply temperature*C-7.00From listBuilding Design Heating and Cooling LoadsWime2.063From listDesign cooling loadKW2.063Conversion UnitsBuilding heating and Cooling EnsisonWimeEstimateConversion UnitsBuilding heating energy demandMWh2.693Motes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh2.693Conversion UnitsWime </td <td>Cooling Technology</td> <td>-</td> <td>Vapor Compression Chiller</td> <td>Drop Down List</td>	Cooling Technology	-	Vapor Compression Chiller	Drop Down List
(COP)Defined temperatureConstant parameter-4.00From List or User DefinedFirst order parameterUser-DefinedSecond order parameterUser-DefinedElectrical auxiliary powerWeser/From List or User-DefinedUser-DefinedCold Energy Source-RefrigerantDrop Down ListQuality factor-0.70From List or User-DefinedStorage System-No storageDrop Down ListDistribution System-No distributionDrop Down ListPlacement-No distributionDrop Down ListInsulation level-No distributionDrop Down ListMean design temperature-No distributionDrop Down ListDesign temperature-1.00From listEfficiency-1.00From listSupply temperature*C-7.00From listElectrical auxiliary powerWeser/-From listWeser/-100.00From listBuilding Design Heating and Cooling LoadsWiter2.662Design cooling loadKW2.662-Design teating energy demandMWh2.693-Building heating energy demandMWh2.693-Building neergy demandMWh2.693-KWh4.893.000Conversion Units-Building cooling energy demandMWh4.893.000-KWhKWh4.893.000 <td>Estimated Coefficient Of Performance</td> <td></td> <td>Assumes a second order</td> <td></td>	Estimated Coefficient Of Performance		Assumes a second order	
Constant parameter	(COP)		polynomial function of ambient femperature	
Constant parameterSecond order parameterUser-DefinedUser-DefinedElectrical auxiliary powerWeled-RefrigerantFrom List or User-DefinedCold Energy Source-RefrigerantDrop Down ListQuality factor-0.70DefinedStorage System-No storageDrop Down ListDistribution System-No distributionDrop Down ListPlacement-No distributionDrop Down ListInsulation level-No distributionDrop Down ListMean design temperature-No distributionDrop Down ListDesign temperature drop-No distributionDrop Down ListColing Emission System-1.00From listSupply temperature*C-7.00From listSupply temperature*C-7.00From listBuilding Design Heating andWm ² 100.00From listBuilding Design Heating andWm ² 100.00Conversion UnitsBuilding Heating and Cooling BasisKW2.663Conversion UnitsBuilding heating energy demandMWh2.693Conversion UnitsBuilding heating energy demandMWh4.893.000Conversion UnitsBuilding cooling energy demandMWh4.893.000Conversion Units	Constant perometer]	4.00	From List or User
First order parameter-User-DefinedSecond order parameter-User-DefinedElectrical auxiliary powerWeedFrom List or User-DefinedCold Energy Source-RefrigerantQuality factor-0.70Storage System-No storageDistribution System-No distributionPlacement-No distributionInsulation level-No distributionMean design temperature drop-No distributionDesign temperature drop-1.00Storage System-1.00Efficiency-1.00Supply temperature drop-From listDesign temperature drop-1.00Supply temperature-From listReturn temperatureSupply temperature*COoling LoadsWima*Building Design Heating and Cooling IoadkWReturn temperature grop-Notes/Range-Design neating loadkWkW2.663building heating and Cooling IoadWima*Building heating energy demandMWhkWh2.693.000Building neating energy demandMWhkWh4.893.000KWh4.893.000Suilding neating energy demandMWhKWh4.893.000Conversion UnitsBuilding neating energy demandMWhKWh4.893.000Conversion UnitsBuilding neat	Constant parameter	-	4.00	Defined
Second order parameterUser-DefinedElectrical auxiliary powerWebeatFrom List or User-DefinedFrom List or User-DefinedCold Energy Source-RefrigerantDrop Down ListQuality factor-0.70Drop Down ListStorage System-No storageDrop Down ListDistribution System-No distributionDrop Down ListPlacement-No distributionDrop Down ListInsulation level-No distributionDrop Down ListMean design temperature drop-No distributionDrop Down ListColing Emission System-Heat Exchanger-EvaporatorDrop Down ListEfficiency-1.00From listSupply temperature°C-7.00From listSupply temperature°C-7.00From listBuilding Design heating and Cooling LoadsWimet100.00From listBuilding Heating and Cooling LoadsWimet2.800Conversion UnitsBuilding heating energy demandMWh2.693Conversion UnitsBuilding heating energy demandMWh2.693.000Conversion UnitsBuilding cooling energy demandMWh4.893.000Conversion UnitsBuilding cooling energy demandMWh4.893.000Conversion Units	First order parameter	-		User-Defined
Electrical auxiliary powerWeied kWheatPerform List or User- DefinedFrom List or User- DefinedCold Energy Source-RefrigerantTop Down ListQuality factor-0.70From List or User- DefinedStorage System-No storageDrop Down ListDistribution System-No distributionDrop Down ListPlacement-No distributionDrop Down ListInsulation level-No distributionDrop Down ListMean design temperature-No distributionDrop Down ListDesign temperature drop-No distributionDrop Down ListCooling Emission System-Heat Exchanger-EvaporatorDrop Down ListEfficiency-1.00From listSupply temperature°C-7.00From listReturn temperature°C-7.00From listBuilding Design Heating and Cooling LoadsWineatKW2.063Design cooling loadkW2.063Conversion UnitsBuilding Heating and Cooling (cooli ng)Notes/RangeConversion UnitsBuilding Heating and Cooling Cooling LoadsUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh4.893Conversion UnitsBuilding cooling energy demandMWh4.893.000Conversion Units </td <td>Second order parameter</td> <td>-</td> <td></td> <td>User-Defined</td>	Second order parameter	-		User-Defined
Cold Energy Source-RefrigerantDrop Down ListQuality factor-0.70From List or User- DefinedStorage System-No storageDrop Down ListDistribution System-No distributionDrop Down ListPlacement-No distributionDrop Down ListInsulation level-No distributionDrop Down ListMean design temperature-No distributionDrop Down ListDesign temperature drop-No distributionDrop Down ListCooling Emission System-Heat Exchanger-EvaporatorDrop Down ListEfficiency-1.00From listSupply temperature°C-7.00From listReturn temperature°C-5.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign cooling loadkW2.652Conversion UnitskW2.6520.800Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh4.893.000Conversion UnitsKWh4.893.000KWh4.893.000Conversion Units	Electrical auxiliary power	W _{elec} ∕ kW _{heat}		From List or User-
Quality factor-0.70From List or User-DefinedStorage System-No storageDrop Down ListDistribution System-No distributionDrop Down ListPlacement-No distributionDrop Down ListInsulation level-No distributionDrop Down ListMean design temperature-No distributionDrop Down ListDesign temperature drop-No distributionDrop Down ListCooling Emission System-Heat Exchanger-EvaporatorDrop Down ListEfficiency-1.00From listSupply temperature°C-7.00From listReturn temperature°C-5.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign cooling loadkW2.063Conversion UnitsBuilding Heating and Cooling LoadskW2.693Conversion UnitsBuilding Heating and Cooling loadMWh2.693Conversion UnitsBuilding heating energy demandMWh2.693Conversion UnitsBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh4.893Conversion Units	Cold Energy Source	-	Refrigerant	Drop Down List
Storage System-No storageDefinedStorage SystemDistribution SystemDrop Down ListPlacement-No distributionDrop Down ListInsulation level-No distributionDrop Down ListMean design temperature-No distributionDrop Down ListDesign temperature drop-No distributionDrop Down ListCooling Emission System-Heat Exchanger-EvaporatorDrop Down ListEfficiency-1.00From listSupply temperature°C-7.00From listReturn temperature°C-5.00From listElectrical auxiliary powerWeiled KWheatIno.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign cooling loadkW2.063Conversion UnitsBuilding Heating and Cooling asisUnitsEstimateNotes/RangeBuilding Heating and Cooling energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh4.893Conversion Units	Quality factor	-	0.70	From List or User-
Distribution System-No distributionDrop Down ListPlacement-No distributionDrop Down ListInsulation level-No distributionDrop Down ListMean design temperature-No distributionDrop Down ListDesign temperature drop-No distributionDrop Down ListCooling Emission System-Heat Exchanger-EvaporatorDrop Down ListEfficiency-1.00From listSupply temperature°C-7.00From listReturn temperature°C-5.00From listElectrical auxiliary powerWelee/ KW _{neat} From listBuilding Design Heating and Cooling LoadsUnitsEstimateConversion UnitsDesign cooling loadkW2.652Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693 KWhConversion UnitsBuilding cooling energy demandMWh4.893 KWhConversion UnitsBuilding cooling energy demandMWh4.893 KWhConversion Units	Storage System	_	No storage	Defined
Placement Insulation level-No distributionDrop Down List Drop Down List 	Distribution System	- L	No Storage	
Insulation levelInc.No. distributionDrop Down ListMean design temperature-No. distributionDrop Down ListDesign temperature drop-No. distributionDrop Down ListCooling Emission System-Heat Exchanger-EvaporatorDrop Down ListEfficiency-1.00From listSupply temperature°C-7.00From listReturn temperature°C-5.00From listElectrical auxiliary powerWeleedFrom listMaximum cooling load emissionW/m2100.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign cooling loadkW2.063Conversion UnitsBuilding Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign cooling loadkW2.652Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh4.893Conversion UnitsKWh4.893.000Conversion UnitsConversion Units	Placement	- [No distribution	Drop Down List
Mean design temperature Design temperature drop-No distributionDrop Down ListDesign temperature drop-No distributionDrop Down ListCooling Emission System-Heat Exchanger-EvaporatorDrop Down ListEfficiency-1.00From listSupply temperature°C-7.00From listReturn temperature°C-5.00From listElectrical auxiliary powerWeed Wheed KWheed kWheedFrom listMaximum cooling load emissionWm²100.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign cooling loadkW2.663Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding heating energy demandMWh4.893Conversion UnitsBuilding cooling energy demandMWh4.893Conversion Units	Insulation level	-	No distribution	Drop Down List
Design temperature drop Cooling Emission System-No distributionDrop Down ListEfficiency-1.00Drop Down ListSupply temperature Return temperature°C-7.00From listReturn temperature Maximum cooling load emission°C-5.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign cooling loadkW2.063Conversion UnitsDesign cooling loadkW2.652Conversion UnitsBuilding Heating and Cooling BasisUnitsEstimateNotes/RangeBuilding heating energy demand Building heating energy demandUnitsEstimateConversion UnitsBuilding heating energy demand Building cooling energy demandMWh2.693Conversion UnitsKWh2.693.000Conversion UnitsKWh2.693.000Conversion UnitsBuilding heating energy demand Building cooling energy demandMWh4.893Conversion UnitsKWh4.893.000KWh4.893.000Conversion Units	Mean design temperature	-	No distribution	Drop Down List
Cooling Emission System-Heat Exchanger-EvaporatorDrop Down ListEfficiency-1.00From listSupply temperature°C-7.00From listReturn temperature°C-5.00From listElectrical auxiliary powerWelec/ KWheatFrom listFrom listMaximum cooling load emissionW/m2100.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign neating loadKW2.063Conversion UnitsDesign cooling loadkW2.652Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding neating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh2.693.000Conversion UnitsKWh4.893KWh4.893.000Conversion Units	Design temperature drop	-	No distribution	Drop Down List
Efficiency-1.00From listSupply temperature°C-7.00From listReturn temperature°C-5.00From listElectrical auxiliary powerWelec/ KWheatFrom listFrom listMaximum cooling load emissionW/m²100.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign heating loadkW2.063Conversion UnitsDesign cooling loadkW2.652Conversion UnitsDesign cooling loadkW2.652Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsKWh2,693.000KWh2.693.000Conversion UnitsBuilding cooling energy demandMWh4.893Conversion UnitsKWh4.893.000KWh4.893.000Conversion Units	Cooling Emission System	-	Heat Exchanger-Evaporator	Drop Down List
Supply temperature Return temperature°C7.00From listReturn temperature°C-5.00From listElectrical auxiliary powerWeleo' KWheatFrom listFrom listMaximum cooling load emissionW/m2100.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign heating loadkW2.063Conversion UnitsDesign cooling loadkW2.652Conversion UnitsDesign cooling loadkW2.652Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsKWh2.693.000Conversion UnitsConversion UnitsBuilding cooling energy demandMWh2.693Conversion UnitsKWh4.893Conversion UnitsConversion UnitsKWh4.893.000Conversion UnitsConversion Units	Efficiency	-	1.00	From list
Return temperature°C-5.00From listElectrical auxiliary powerWelec/ kWheatFrom listFrom listMaximum cooling load emissionW/m2100.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign heating loadkW2.063Conversion UnitsDesign cooling loadkW2.652Conversion UnitsDesign cooling loadkW2.652Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh2.693Conversion UnitsKWh4.893Conversion UnitsConversion UnitsBuilding cooling energy demandMWh4.893Conversion UnitsKWh4.893.000Conversion UnitsConversion Units	Supply temperature	°C	-7.00	From list
Electrical auxiliary powerWeleo/ kWheatFrom listMaximum cooling load emissionW/m2100.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign heating loadkW2.063	Return temperature	°C	-5.00	From list
KWV heat Maximum cooling load emissionKWV heat Mm2100.00From listBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign heating loadkW2.063 hpConversion UnitsDesign cooling loadkW2.652Conversion UnitsDesign cooling loadkW2.652Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh2.693Conversion UnitsKWh4.893Conversion UnitsConversion Units	Electrical auxiliary power	W _{elec} /		From list
Maximum cooling load emissionWithTool toolTroumistBuilding Design Heating and Cooling LoadsUnitsEstimateNotes/RangeDesign heating loadkW2.063	Maximum cooling load emission	KVV _{heat}	100.00	From list
Cooling LoadsUnitsEstimateNotes/RangeDesign heating loadkW2.063	Building Design Heating and	VV/III	100.00	
Design heating loadkW2.063Conversion Unitshp2.800Conversion UnitsDesign cooling loadkW2.652Conversion Unitston (cooli ng)0.800Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh2.693Conversion UnitsWh4.893Conversion UnitsConversion UnitsBuilding cooling energy demandMWhConversion UnitsKWh4.893.000Conversion Units	Cooling Loads	Units	Estimate	Notes/Range
hp2.800Conversion UnitsDesign cooling loadkW2.652Conversion Unitston (cooli ng)0.800Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh2.693Conversion UnitsKWh4.893Conversion UnitsConversion Units	Design heating load	kW	2.063	_
Design cooling loadkW2.652ton (cooli ng)0.800Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh2.693.000Conversion UnitsBuilding cooling energy demandMWh4.893Conversion UnitsKWh4.893.000Conversion UnitsConversion Units		hp	2.800	Conversion Units
ton (cooli ng)0.800Conversion UnitsBuilding Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693KWh2,693.000Conversion UnitsBuilding cooling energy demandMWh4.893Conversion UnitsKWh4,893.000Conversion Units	Design cooling load	kW	2.652	
Building Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Conversion UnitsBuilding cooling energy demandMWh4.893Conversion UnitsBuilding cooling energy demandMWh4.893Conversion Units		ton	0.800	Conversion Unite
Building Heating and Cooling Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693Building cooling energy demandMWh2,693.000Conversion UnitsBuilding cooling energy demandMWh4.893Conversion Units		(cooli na)	0.800	Conversion Units
Energy Demands on an Annual BasisUnitsEstimateNotes/RangeBuilding heating energy demandMWh2.693kWh2,693.000Conversion UnitsBuilding cooling energy demandMWh4.893kWh4,893.000Conversion Units	Building Heating and Cooling			
Building heating energy demandMWh2.693kWh2,693.000Conversion UnitsBuilding cooling energy demandMWh4.893kWh4,893.000Conversion Units	Energy Demands on an Annual Basis	Units	Estimate	Notes/Range
kWh2,693.000Conversion UnitsBuilding cooling energy demandMWh4.893Conversion UnitskWh4,893.000Conversion Units	Building heating energy demand	MWh	2.693	
Building cooling energy demand MWh 4.893 kWh 4,893.000 Conversion Units		kWh	2,693.000	Conversion Units
kWh 4,893.000 Conversion Units	Building cooling energy demand	MWh	4.893	
		kWh	4,893.000	Conversion Units

4. LowEx Systems for Buildings

Well designed buildings, that are highly insulated, have air-tight building envelopes, and adequate solar protection can still benefit from the use of low temperature heating and high temperature cooling systems. Applying low-exergy design principles to minimise the temperature difference between the heating and cooling source and the room conditions can result in maximum savings of high quality exergy sources. The table below provides a list of the LowEx technologies applicable for building heating and cooling systems and information on the typical heating and/or cooling temperature range.

LowEx Technology	Cooling temp. [°C]	Heating temp. [°C]
Surface heating and cooling		
Floor heating		
Embedded coils in slabs	10-15	25-30
Coils in surface layers	16-20	28-35
Hollow core slabs	15-18	25-30
Suspended floors	16-20	30-40
Phase Change in floor heating	-	25-50
Wall heating and cooling		
Pipes in surface layers (wet/half wet,mounted)	10-15	25-50
Pipes in surface layers (half-dry embedded)	10-15	25-50
Pipes in surface layers (wet, embedded)	10-15	25-50
Pipes in surface layers (dry systems)	10-15	25-50
Double walls	15-18	25-35
Dynamic Insulation		25-30
Capillary tubes	10-15	25-30
Ceiling cooling and heating		
Radiative panel	10-15	25-50
Cooling beams	10-15	25-50
Ceiling integrated system	10-15	25-50
Evaporative roof surfaces	15-20	-
Ceiling panel cooling by double-roofing with		
Local heaters		
Low temperature radiators/convectors	-	30-50
Radiators integrated in the interior design		
High Temperature Radiators	10-20	20-40
Base board heaters	-	80-130
Transparent insulation	-	40-95

LowEx Technology	Cooling temp. [°C]	Heating temp. [°C]
Air heating and cooling		
Air to air heat exchanger		
Sensible Only Heat Exchangers /	1	40-95
Counter flow air to air heat exchanger/	10-15	20-50
Total (Latent) Heat Exchangers / Regenerator	I	25-50
Altering Heat Exchangers		40-95
Water to air heat exchanger		
Supply air conditioning	-	40-90
Fan coil units	10-15	25-30
Steam / vapour to air heat exchanger		
Supply air conditioning		100-120
Other heat exchanger		
Supply air façade	-	20-100
Evaporative cooling		-
Passive system		
Atria		
Solar chimneys		
Generation / conversion of cold and heat		
Boilers		
Condensing boilers	-	
Pulsating gas boiler	-	50-80
Ground heat		
Ground coils	8-18	-
Bore hole	8-18	18-22
Slab on ground	14-22	16-22
Heat pumps		
Compressor heat pumps	10-15	25-50
Absorption heat pumps	10-15	-
Solar collectors		
Flat plate collectors	-	20-80
Evacuated tube collector	-	20-120
Unglazed flat-plate collector	-	20-80
Combined heat and power generation		
Cogeneration units with gas motor	-	80-90
Cogeneration units with microturbines	-	
Cogeneration units with Stirling motor	-	

Fuel cells		
Fuel cells	-	
Biological systems / Metabolic		
Bacteria	-	20-60
Animals	-	20-35
Plants	20-25	-
Thermal storage		
Seasonal storage		
Ground / rock storage	8-20	40-100
Earth duct storage	10-15	45-75
Hot water storage	-	35-95
Phase change thermal storage		
Short term storage		
Buffer storage tank	5-15	40-90
Domestic hot water tank	-	45-60
Distribution		
Transfer medium		
Air	-	
Water		
Thermera® heat carrier		
Glycol		
Community system		
District heating	-	65-115
District cooling	6-10	

A more complete description of all these systems; their benefits and risks, how they are specified, installed, and used is given in the LowEx Guidebook. Information on typical costs and the range of application in either residential or commercial buildings is also provided.

5. Example Buildings

The Annex studied a total of 30 case study buildings including new and retrofit situations in both residential and commercial buildings. A wide range of LowEx technologies were studied including emission systems in floors, walls and ceilings and numerous combinations of other system types.

The full reports of the case studies including energy and exergy analysis, together with human comfort and occupant satisfaction reports are given in the Guidebook. Two example case studies are given here as an indication of the success of using LowEx systems in commercial and residential buildings respectively.

5.1. Bregenz - Art Museum

The four storey art museum building in Austria has a double skin external envelope with an outer openable glass wall. The space heating is provided with a hydronic system embedded in the building structure. The dynamic coupling of the concrete enables heating and cooling of the room climate to be carried out using the building mass. In addition, two-zone displacement ventilation provides a minimum of outside air that no longer has to perform the tasks of heating and cooling - its only function is that of ventilation for indoor air quality.

The energy and operation costs are more than 50 % lower in comparison with other fully air-conditioned art museums.

Museum in Bregenz with pipes embedded in walls and concrete slabs for heating and cooling. Details right show the displacement ventilation and the generation system for cooling and heating.

5.2. Ecological Dwellings "Amboise" Maastricht, the Netherlands

Amboise is a demonstration project for the Dutch Low Temperature heating programme. It contains 18 semi-detached houses, and is situated in the city of Maastricht. There are two orientations: 9 dwellings face south and 9 dwellings face north. The floor plan is identical. Having identical dwellings with different low temperature heating emission systems offers the opportunity to compare both systems in terms of energy, thermal comfort and the users' experience.

The occupants' response to the dwellings is generally favourable and those with the wall heating system would accept a lower air temperature than with the radiator system: confirming the assumption that the radiation effect of the wall heating can provide increased thermal comfort at lower air temperatures. The heat-up times were perfectly adequate for the occupants and temperatures were very stable in the wall-heated homes.

Every south-facing dwelling has a condensing gas boiler for space heating as well as for the domestic hot water (dhw) supply. A solar collector preheats the dhw. There is a wall heating system with a maximum flow temperature of 55°C and a return temperature of 40°C. The bathroom and the kitchen have additional floor heating. The houses are mechanically ventilated.

North-facing houses were supplied with radiators for heating (70/50°C). The dhw is heated by a heat pump together with a storage tank using exhaust air as the heat source. Installation Scheme – south facing dwelling

International Energy Agency (IEA) Energy Conservation in Buildings & Community Systems Programme (ECBCS)

The International Energy Agency (IEA) was established as an autonomous body within the Organisation for Economic Co-operation and Development (OECD) in 1974, with the purpose of strengthening co-operation in the vital area of energy policy. As one element of this programme, member countries take part in various energy research, development and demonstration activities. The Energy Conservation in Buildings and Community Systems Programme has co-ordinated various research projects associated with energy prediction, monitoring and energy efficiency measures in both new and existing buildings. The results have provided much valuable information about the state of the art of building analysis and have led to further IEA co-ordinated research.

International Energy Agency Energy Conservation in Buildings and Community Systems Programme