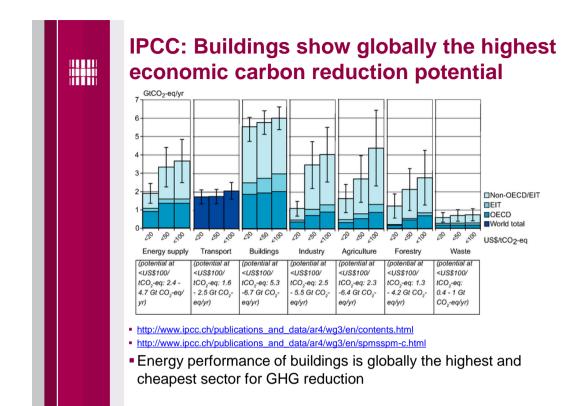
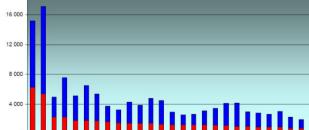

Buildings in Estonian ENMAK 2030+ energy strategy – cost optimal energy savings

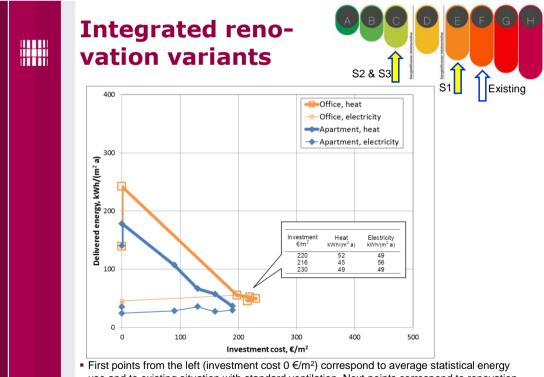

IEA-ECBCS Annex 61, Sept 22, 2014 Tallinn

Jarek Kurnitski

Professor, Tallinn University of Technology, Aalto University Vice-president REHVA


www.nzeb.ee

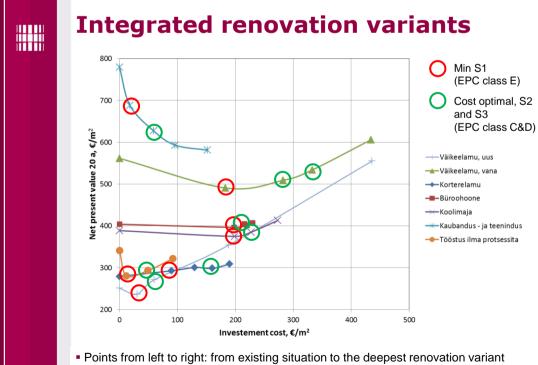
980 - 1230



 DALY/year*million – disability adjusted lifeyear. Blue: outdoor sources, red: indoor sources. (IAIAQ, 2011)

2030 energy scenarios – what can be done with building stock?

(ENMAK 2030+)


	Scenario S1	Scenario S2	Scenario S3
Integrated renovation variants	Min	Cost optimal	Cost optimal
Renovation rate of apartment buildings, %/a	0.75	1.5	2.5
Renovation rate of detached houses, %/a	0.5	1.0	2.0
Renovation rate of non-residential buildings, %/a	0.5	0.75	1.0
Building stock loss (demolition), %/a	0.3	0.3	0.3
New construction rate in residential buildings, %/a	1.0	1.0	1.0
New construction rate in non- residential buildings, %/a	1.5	1.5	1.5
Application of nZEB requirements in new buildings, a	2026	2021	2016

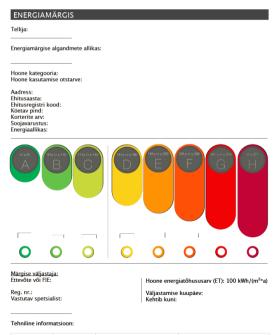
 First points from the left (investment cost 0 €/m²) correspond to average statistical energy use and to existing situation with standard ventilation. Next points correspond to renovation variants from EPC E to C level.

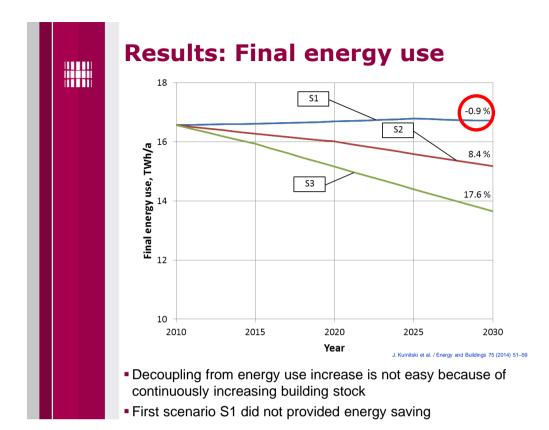
Description of renovation variants

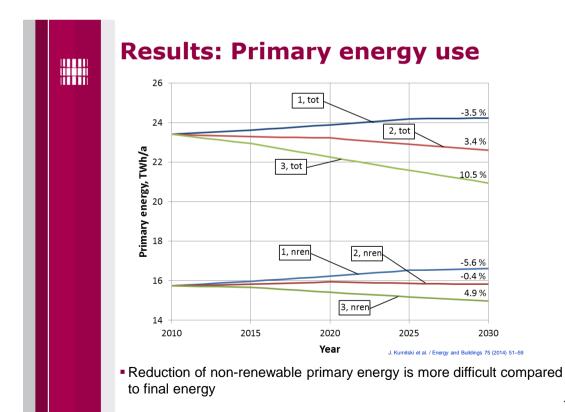
EP-class	DH-New	DH-Old	Apartment buildings	
E	HRV 80%	HRV 80%, pellet bo	iler, roof Wall insulation 200 mm,	
(260/280)		insulation 250 mm	windows U=1.1, mechanical exhaust ventilation	
D	E + pellet boiler	E + wall insulation 2		
(210/180)		windows U=0.7	basement ceiling 150 mm, two pipe heating system, exhaust air heat pump	
С	E + GSHP, roof inslulation	HRV 80%, GSHP, ro		
(160/150)	250 mm, windows U=0.7	insulation 250 mm, mm, windows U=0.	wall 300 AHU or central AHU)	
В	C + solar collectors, wall	C + solar collectors,	floor C + windows U=0.6, solar	
(120/120)	insulation 250 mm, floor	insulation 300 mm	(B class collectors, HRV 80%	
	insulation 300 mm	not achieved EP=13	(apartment AHU)	
EP-class,	Office buildings	Sch	hool buildings	
primary energy				
kWh/m²				
(offices/				
schools)				
D	HRV 70%, wall insulation 200			
(210/200) C	insulation 250 mm, window HRV 70%, wall insulation 150			
(160/160)	insulation 200 mm, window	,	HRV 70%, wall insulation 200 mm, roof insulation 250 mm, window U=1.2	
(100/100)	controlled lighting	0-0.9, demand ins		
С	HRV 70%, wall insulation 250) mm. roof HR	V 70%, wall insulation 250 mm, roof	
(160/160)	insulation 300 mm, window	U=0.9 ins	insulation 300 mm, window U=0.9, demand controlled lighting	
В	C + demand controlled lighti	ng (B class not C +	demand controlled ventilation	

• Net present value includes renovation cost and discounted energy cost of 20 y

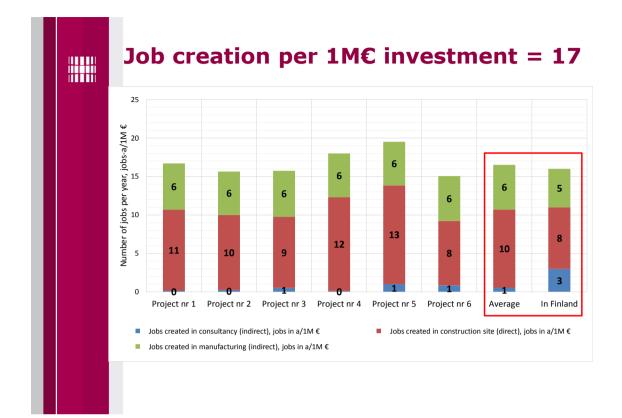
New buildings – nZEB buildings

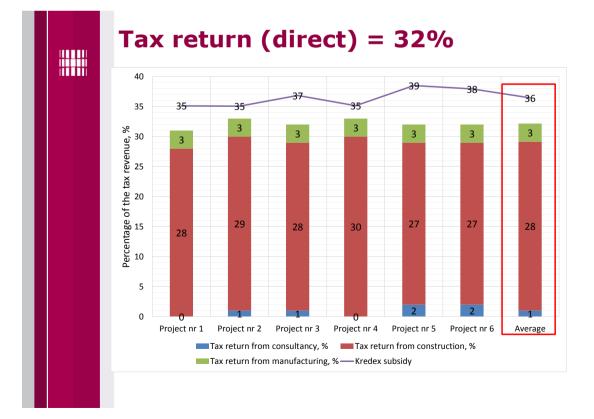

- Different application time of nZEB in scenarios
- Primary energy requirements for 9 building types (apply from Jan 9, 2013)


	nZEB A kWh/(m ² a)	Low energy B kWh/(m ² a)	Min.req. new C (cost opt.) kWh/(m ² a)	Min.req. maj.ren. D (cost opt.) kWh/(m ² a)
Detached houses	50	120	160	210
Apartment buildings	100	120	150	180
Office buildings	100	130	160	210


- nZEB requirement will apply from 2019/2021 (not yet mandatory)
- Primary energy factors:
 - Electricity 2.0
 - Fossil fuels 1.0
 - District heat 0.9
 - Renewable fuels 0.75

Hoone aadress: Kehtib kuni:




Renovation grants – outcome or income for the government budget?

- In Estonia 520 apartment buildings have been deeply renovated with KredEx renovation grants (direct financial support of 25% or 35%)
- Renovation grants have enabled:
- 1. to start deep renovation (If not supported by the government, deep renovation would not start because of high investment cost, however economically beneficial in a long run)
- 2. to set technical requirements as integrated renovation packages, including to install ventilation to improve indoor climate
- Common thinking has been that renovation grants are "lost" money for the government

Kirjeldus Ρ1 P2 P3 P4 P5 P6 1966 Ehitusaasta 1970 1972 1983 1976 1982 5 Korruselisus 9 10 5 5 2 - 54 809 3 280 2 804 Netopindala, m² 11 374 10 899 7 461 Köetav pind, m² 10 620 3 986 9 081 6 2 7 0 2 677 2 367 Eluruumide pind, 9 630 3 607 7 876 3 977 2 677 2 046 m² 12 484 43 658 19 084 39 230 15 676 10 239 Maht, m³ 55 Eluruumide arv 162 54 102 119 30 Kompaktsus, A/V, 0,23 0,17 0,41 0,40 0,26 0,37 m⁻¹ Küte, kWh/m² a 179 197 227 169 263 156 Elekter, kWh/m² a 41 35 30 36 27 43 Energiatõhusus-arv, 233 260 275 206 201 322 kWh/m²

Data from real renovation projects

For the same cost – in which building you want to live?

Not renovated

Renovated building

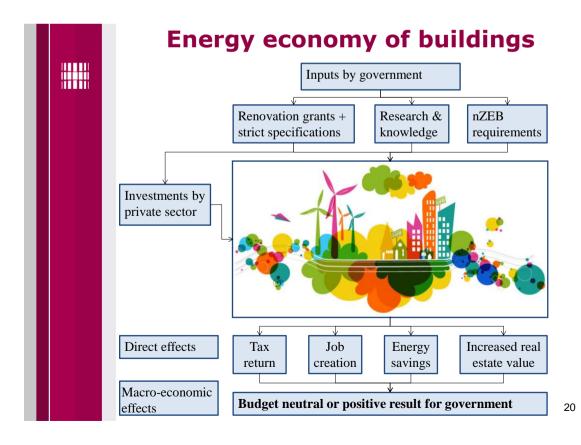
The phenomena of deep integrated renovation:

 Investment cost of renovation of 160 €/m² equals to annual repair fund collection during 20 years of 31.2 €/m² (19% of renovation investment) for roof etc. small repairs, i.e. the total cost is the same

17

Cost benefit analyses (direct effects)

- Incomes for government are higher than expenditures in the case of scenarios S1 and S2 (15% and 25% renovation grants)
- S3 (35% renovation grants + many other measures) can be justified with job creation and stimulation of economy and export (positive effect on government budget in macro-economic analyses)


	Cost government, M€/a	Cost private s., M€/a	Income government, M€/a	Income private s., M€/a	Jobs created pers-y/y
S1	3.6	48.5	17.5	-1.4	880
S2	40.5	130.5	57.5	61.0	2850
S3	126.2	227.7	111.8	140.4	5620

All costs without new construction which rate was constant in all scenarios

- Government incomes are tax return from renovation and savings from improved indoor climate
- Private sector incomes: energy savings (per 1 year only) and real estate value increase

Conclusions

- It is not easy to decouple the building stock (and economy) from energy – calculate scenarios before setting targets
- There are no alternatives for nZEB new buildings and deep, integrated renovation supported/controlled with renovation grants
- Estonian studies report highly significant economic benefits from renovation:
 - quantified tax return of 32% of renovation total cost;
 - and job creation of 18 jobs in a year per 1 M€ renovation cost.
- Quantified economic effects created understanding about the energy economy of buildings

